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Abstract: The pulp-froth interface position is important from a metallurgical point of view because it 
determines the relative importance of the cleaning and the collection zones. The pulp-froth interface 
position is measured based on variations of specific gravity, temperature or conductivity between the two 
zones to locate the pulp froth interface position. In this study, the pressure measurements are used to 
calculate the values of the froth layer height. These two meters are installed in the upper part of the 
column at 1.4 m and 2.4 m respectively, from the top of the column. Methods using pressure gauges are 
commonly used in industrial operations Even though their accuracy is limited (due to assumptions of 
uniformity of the pulp and froth density), and they always have some error. In the Sarcheshmeh copper 
industrial plant (Iran), a float was installed near the column with 2.5 m height that was calibrated to 5 cm 
intervals in order to determine the more exact forth height and compare it with the recorded froth height 
in control room. In this paper, an algorithm based on Kalman Filter is presented to predict on-line froth 
height errors using two pressure gauges. This research is based on the industrial real data collection for 
evaluating the performance of the presented algorithm. The quality of the obtained results was very 
satisfied. The RMS errors of prediction froth height errors was less than 0.025 m. 

Keywords: prediction; accuracy; froth height; Kalman filter; error 

Introduction 

Nowadays column flotation is an important mineral processing unit. Figure 1 presents 
a simplified scheme of a flotation column that consists of two principal zones: the 
collection zone (less than 20% of air) and the froth zone (more than 70% of air). The 
pulp feed (15–40% solids) enters near the top of the collection zone. Hence, particles 
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are contacted counter-currently with air bubbles generated near the bottom of the 
column. Hydrophobic particles collide and adhere to the bubbles and they move 
upwards to the pulp/froth interface. The froth zone is a mobile bubble bed, 
approximately 1 m in froth depth, which is contacted counter-currently with wash 
water (added near the overflow level). 

Level control in flotation columns is an important factor that influences the 
recovery and grade of concentrate from the column. A flotation column is a nonlinear, 
multi-variable problem with changeable parameters that traditional methods have 
difficulty controlling. 

When the pulp level is too high the concentrate overflows too much and the grade 
of the concentrate is reduced. When the pulp level is too low the concentrate yield 
may be reduced, which also results in a reduction in the recovery. 

 

Fig. 1. Flotation column 

Many techniques have been proposed in the past for the froth depth measurement. 
The most common were summarized by Finch and Dobby (1990) and some further 
developments were presented by Bergh and Yianatos (1995) and Del Villar et al. 
(1999). All these methods use the difference in physical characteristic, such as specific 
gravity, temperature or conductivity, between the pulp and the froth to locate the pulp 
froth interface position. Even though the principles behind these methods are fairly 
simple, some of them have encountered important operating problems that limit their 
accuracy. Nevertheless, methods based on the use of a float or pressure gages (one to 
three) are commonly used and seem to be precise enough for day-to-day process 
supervision. 

Some experimental works, for example Hyma and Salama (1993) as well as Pal 
and Masliyah (1991), discussed and tested the control of the froth layer height by 
manipulating the non-floated flow rate in a pilot plant using PI controllers. Del Villar 
et al. (1999) designed and implemented a distributed PI controller in which the bias 
and the froth layer height were controlled by manipulating the wash water flow rate 
and the non-floated flow rates, respectively. 
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More recently, artificial neural network (ANN) based system identification and 
model predictive control of a flotation column has been reported by Mohanty (2009). 
The ANN is an empirical modeling tool, which is analogous to the behaviour of 
biological neural structures. ANNs are very powerful to effectively represent complex 
non-linear systems. It is also considered as a non-linear statistical identification 
technique. He describes the design of a ANN based model predictive controller for 
controlling the interface level in a flotation column. 

The pulp level in a floatation column changes frequently during operation because 
of changes to the nature of the pulp and the varying discharge rate. Methods using 
pressure gauges are commonly used in industrial operations even though their 
accuracy is limited (due to assumptions of uniformity of the pulp and froth density), 
and they always have some error. 

Until now, most studies have focused in importance of froth height system 
accuracy in floatation operation, and there are not any report in the field of prediction 
and correction of errors in this system.  

This paper aims at presenting a new method to get prediction of froth depth 
measurement errors using Kalman Filter (KF) on the pressure profile along the column 
upper section. A KF is an algorithm for obtaining a minimum mean square error point 
estimate of a random process. In this study, the Kalman Filter method was done using 
data from case study on CISA flotation column at the Sarcheshmeh copper plant in 
Iran. 

Industrial plant 

The Sarcheshmeh copper ore body which may rank as third or fourth largest in the 
world contains 1 billion tones (1 petagram) averaging 0.90% copper and 0.03% 
molybdenum. The process consists of grinding circuit with their associated flotation 
circuits. Figure 2 shows the flotation circuit of the Sarcheshmeh concentrator plant. 

The flotation circuit consists of rougher, cleaning and column flotation stages. The 
rougher flotation bank consists of 8 cells (130 m3) and the regrind mill is a 3.962 m by 
5.791 m ball mill. The cleaner, scavenger banks each have 3 (50 m3), 5 (50 m3) cells, 
respectively. The single stage column flotation operation is composed of a Metso 
Minerals CISA column with 4 m internal diameter, 12 m height and associated 
instruments (Fig. 3). A final product with an average grade of 28–30% Cu 
(chalcopyrite and chalcocite) and 0.7–0.8% Mo are obtained after flotation stages.  

The primary objectives are column recovery and concentrate grade, which 
represent the indices of process productivity and product quality. Common practices to 
control secondary objectives, such as pH at the feed, froth depth, air flow rate and 
wash water flow rate. These are usually implemented as local controllers or under 
Distributed Control Systems (DCS). Ideally, when primary objectives are measured, 
the control strategy is to change the set points of the controllers under DCS, in order to 
achieve a good process performance. 



 F. Nakhaei, M. Irannajad 760 

 

Fig. 2. The flow sheet of flotation circuit of the Sarcheshmeh industrial plant 

 

Fig. 3. Sarcheshmeh industrial plant flotation column 

Figure 4 illustrates simplified flotation column instrumentation with all of the 
variables included. The wash water flow rate is measured by means of an 
electromagnetic flow meter and controlled by a pneumatic valve. The air flow rate is 
measured by a mass flow meter and controlled by a pneumatic valve. The pulp feeding 
is controlled by means of a peristaltic pump with variable speed. Since the non-floated 
fraction flow rate is not directly measured, it must be inferred from the signal sent to 
the corresponding frequency inverter. The use of a peristaltic pump to control this 
flow rate requires special attention, due to the pressure variation at the pump inlet 
during the operation. 

The instruments and the actuators (pumps and valves) are all connected to a data 
acquisition system which takes care of the analog-to-digital conversion of the output 
variables and of the digital-to-analog conversion of the manipulated variables.  

The pressure measurements (P1 and P2 taken, respectively, by LT) are used to 
calculate the values of the air hold up in the recovery zone and of the froth layer 
height. These two meters are installed in the upper part of the column at H1 and H2, 
respectively, at 1.4 m and 2.4 m from the top of the column. Each sensor required to 
12–53 DC volt energy source and transfer 4–20 mA flow to control system. A real 
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time data acquisition system was used to store the operating variables on a PC 
computer hard disk. The ultimate objective of automatic control is to continuously 
adjust process operation to maintain the best profitability despite disturbances and 
uncertainties while respecting constraints such as safety and environmental issues. To 
achieve this goal, a hierarchical indirect optimization structure is often selected. 

 

Fig. 4. Schematic diagram of the flotation column and associated instrumentation 

Froth height 

Interface position is important from a metallurgical point of view, because it 
determines the relative importance of the cleaning and collection zones. Many 
techniques have been proposed in the past for froth depth measurement. All these 
methods use the difference in a physical characteristic, such as specific gravity, 
temperature or conductivity, between the pulp and the froth to locate the pulp-froth 
interface position. Nevertheless, methods based on the use of a float or pressure 
gauges (one to three) are commonly used. The approach privileged in this work is 
based on the use of two pressure gauges and a float (Fig. 5). The relationships between 
the pressure values and the process variables can be expressed by: 
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The froth layer height is inferred from the measured pressures and is given by 
equation (4): 
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where P1 and P2 are the pressure measured values (Pa), H1 = 1.4 m and H2 = 2.4 m 
(pressure meters distance from the top of the column) and f  and c  are the average 
value of the froth layer density and pulp in collection zone (kg/m3), respectively. 

 

Fig. 5. Two pressure gauges are installed in the upper part of the column 

The plant sensors provide raw measurement of secondary variables. Since 
measurements may be corrupted by bias, noise and even sensor failures, an observer is 
essential. Observation and data reconciliation, supervised by process and sensor fault 
detection and diagnosis techniques, extract consistent and reliable information from 
raw measurements, can infer unmeasured process states or temporarily replace 
defective sensors, etc. In the Sarcheshmeh copper plant, a float was installed near the 
column with 2.5 m height which is calibrated to 5 cm intervals, in order to, determine 
the accurate forth height and compare it with the recorded forth height in control room 
(measured froth height by two pressure gages) that is observable continuously by 
camera (Fig. 6). 

 
Fig. 6. Installed float near the column 
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Research method 

Kalman Filter formulation 

The KF is an optimal estimation technique that minimizes the estimation error in 
a well-defined statistical sense. As a linear filter using a recursive algorithm which 
processes measurement information sequentially in time, the KF involves two main 
steps: filtering and prediction. Filtering is the estimation of the state vector at the 
current epoch based on all previous measurement information. 

Prediction involves the estimation of the state vector X  at a future time (Simon, 
2006). The KF system state vector (dynamic model) which evolves with time can be 
written as: 

  
kkkk WXX  1 . (5) 

corresponding to the measurement vector (measurement model): 

 kkkk VXHZ   (6) 

where ),0(~ kkk QNW  and ),0(~ kkk RNV  are the system and measurement noises 
which are mutually uncorrelated vectors. Subscript k  refers to the epoch of time. The 
processes W and V are independent, zero mean Gaussian proportional to 2

  and 2
v  

variances. 2
  coefficient and also β1, β2 are estimated using autocorrelation equations 

as described below (Mosavi et al., 2010):  
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where   is the transition matrix. A KF requires that the system model to be in state-
space form. In this modeling, the transition matrix can be obtained by using the time-
varying Auto-Regressive (AR) model. AR is a famous model, which is used in a 
discrete-time stochastic process. A time varying AR model of second-order is 
mathematically described by: 

 )()2()()1()()( 21 kekykakykaky   (11) 
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where )( iky  demonstrates the output of the model and e(k) describes the noise value 

of the system at time k for k = 1, 2.... ai(k) for i = 1, 2 is the sets of parameters which 
describes the model structure. To identify the system, the parameters i should be 

calculated in a way that summation of square errors gets the minimum value. The 
parameter matrix k  may be estimated using the least-squares (LS) method as shown 

by Mosavi et al., 2002: 
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where matrices Fk and Yk are calculated as follows: 
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Once the model parameters ai(k) are known, the value of function y(k) for an 
arbitrary k  can be computed as follows: 
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In order to generate state-space some AR differential equations should be used as 
the sequence of equations below show: 
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Finally, we are led to the following canonical controllable state-space 
representation: 
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in which, the transition matrix k  is resulted from: 
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In the KF formulation, H is the measurement connection matrix. Elements of H are 
the partial derivatives of the predicted measurements with respect to each stage and 
must be computed for every epoch.  

The respective Kalman filtering algorithm involves Kalman gain (K), covariance 

update (Pk) and prediction ( 
1kP ), in the time update and measurement update steps. 

The brief description of second-order KF algorithm is as follows (Mosavi et al., 2006): 
Step 1: Initialize KF parameters  
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Step 2: Calculate Kalman gain 
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Step 3: Update the estimation process  
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Step 4: Update the error covariance 
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Step 5: Project the state ahead 
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Step 6: Project the error covariance ahead 

 k
T
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Data collection 

The data for this study were collected during the normal operation of the Sarcheshmeh 
concentration plant. Flotation column is operated under distributed control of froth 
depth, and chemical reactive dosages, to collect operation data at steady state. In order 
to collect real data to assess efficiency of suggested method, 300 observations of froth 
height were provided in 60-hours simultaneously with float and tow pressure gauges, 
i.e. that during the measurement period (12 minutes), the froth height was measured at 
the same time twice, one by pressure gauges and the other by float. Field 
instrumentation was installed and calibrated, and data signals communicated to a PC 
computer. 

Results and Discussion 

The previous section provided the algorithm for the KF and the means for estimating 
the quantities needed to start the filter. In this section the implementation of the KF for 
use in predicting the error of the two pressure gages will be described. Figure 7 shows 
the comparison plots of the measured froth height by pressure gages and the actual 
froth height for 60-hours data set. The prediction of froth height error by using KF was 

estimated by the MATLAB software. The results are shown in Fig. 8 and Tables 1. 
The performances of the models developed in this study have been assessed using 

various standard statistical performance evaluation criteria. The statistical measures 
considered have been correlation maximum, minimum average and root mean square 
(RMS) error. The RMS criteria is calculated according to the following equation: 
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Fig. 7. Comparison of real froth height values  
in column flotation floatation with measured values 
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Fig. 8. Comparisonof predicted results using the KF model  

with actual errors values for froth height in the flotation column 

Table 1. Maximum, minimum, average and RMS errors in the prediction  
froth height errors in the column flotation using KF 

Parameters Measured froth height error prediction error (m) 

Maximum 0.099 

Minimum –0.1131 

Average 0.0002 

RMS 0.025 

 
Table 1 presents the error values in the prediction of froth height errors in the 

column flotation by using KF when RMS is lower than 0.025 m. From these results, 
a KF model which can be used to predict the error of a sensor with an acceptable error. 
Also, the result from a test of real data shows that the KF method will guarantee 
access to more accurate froth height by prediction and correction of sensor 
measurement errors.  

Conclusion 

In this paper, we have provided a summary and improvements of the most common 
techniques used in the flotation column for measurement of froth height. We have 
shown that the standard implementation of the Kalman filter provides proper forecast 
of random error. It is able to provide an efficient analysis when measurements are 
available. The method described in this paper is based on KF using real data from 
industrial scale in order to predicate measured froth height errors of the Sarcheshmeh 
copper complex. The quality of the obtained results was very satisfied. The RMS 
errors of prediction froth height errors were less than 0.025 m. Moreover, with 
correction of predicted errors, it can be possible to reduce RMS errors in on-line 
analyzers. Therefore, the implementation of estimators such as Kalman Filter could 
significantly improve the measuring of the froth depth and as well as the column 
metallurgical performance. This could lead to great possibilities for plant optimization 
of the flotation column process. 
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